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Scale-free and stable structures in complexad hocnetworks
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Unlike the well-studied models of growing networks, where the dominant dynamics consist of insertions of
new nodes and connections and rewiring of existing links, we studyad hocnetworks, where one also has to
contend with rapid and random deletions of existing nodes~and, hence, the associated links!. We first show that
dynamics based only on the well-known preferential attachments of new nodes do not lead to a sufficiently
heavy-tailed degree distribution inad hocnetworks. In particular, the magnitude of the power-law exponent
increases rapidly~from 3! with the deletion rate, becoming̀ in the limit of equal insertion and deletion rates.
We then introduce a local and universal compensatory rewiring dynamic, and show that even in the limit of
equal insertion and deletion rates true scale-free structures emerge, where the degree distributions obey a
power law with a tunable exponent, which can be made arbitrarily close to 2. The dynamics reported in this
paper can be used to craft protocols for designing highly dynamic peer-to-peer networks and also to account for
the power-law exponents observed in existing popular services.
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I. INTRODUCTION

Several random protocols~i.e., stochastic rules for adding
deleting nodes and edges! that lead to the emergence o
scale-free networks have been recently proposed. Such
free networks are characterized by so-called power-law
gree distributions, where the probability that a random
picked node in the network has degreek decreases polyno
mially with increasingk for large values ofk, i.e., P(k)
;k2g, where g.0 is referred to as the exponent of th
power-law distribution. The underlying dynamics for almo
all of these models follow the principle of preferential attac
ment for targeting or initiating newly created links of th
network. The simplest case is the linear preference dyna
a node is added to the network at each time step and in
duces a constant number of new edges or links, where
destination node of each link is picked randomly with pro
ability proportional to the current degree of the node. T
resulting network for this simple model has a power-law d
gree distribution with an exponentg53. Other variations of
this procedure have also been widely studied@1,4–6#.

Many of the interesting and potentially useful propert
of random power-law networks appear when the degree
ponentg,3. These properties include almost constant dia
eter and zero percolation threshold@5#. Moreover, almost all
cases of power laws observed in real life networks, wh
these models ultimately might want to account for, have
ponents less than 3@5#. Motivated by both these issues, a fe
stochastic linking rules resulting in exponents with mag
tude less than 3 have been introduced. Examples of s
protocols include the doubly preferential attachment sche
for links, where both the initiator and the target nodes of
edge are chosen preferentially, as proposed in@3,6#, and the
rewiring scheme of existing links to preferential targets
proposed in@2#. Such parametrized protocols, where the d
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gree exponentg can be varied from as close to 2 as desir
to higher values have been termeduniversal protocols.
Moreover, if each node in the network makes connectiv
decisions~e.g., adding or rewiring links! based only on its
own information~e.g., the outcome of a random number ge
erator, or the information that one of its edges has been
leted! then the protocol is said to belocal.

Most of these random protocols have been motivated
the need to model growing and mostly rigid networks, whe
nodes and links are gradually added. Examples of s
graphs are the citation and collaboration networks. Onc
connection is made between two nodes in these graphs
never deleted, and also nodes never leave the networ
second class of networks that has been studied is where
nodes are stable, but the links could be deleted. For exam
on the Worldwide Web one can assume that nodes alm
always remain in the network once created; however, ex
ing links can easily be deleted and new links created. In
paper, we address a third class of networks~first introduced
in @1#!, where the nodes themselves are also unstable
unreliable, and in an extreme case, the nodes~and hence all
their connections! might leave the network without prior no
tice and through independent decisions.

Our motivation for considering such dynamic networ
comes, in part, from the recent interest in designing l
structured orad hoc distributed systems, with peer-to-pe
~P2P! content sharing networks as a prime example. In
instance of Gnutella, for example, a study@7# shows that
almost half of all nodes log off within two hours from the
log in. Hence, the time scale within which the network a
sumes its structure is much shorter than the time scale wi
which it grows. A number of crawls of these networks sho
that at least in some regimes they follow a power law@7#.
However, a stochastic model that can lead to the emerge
of such complex networks has not been proposed. Ano
significant example is thead hocand mobile communication
paradigm where each member can provide a short-time
reliable service and yet a global topological structure w
reliable properties is to be ensured at all times.
©2004 The American Physical Society01-1
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We first use the continuous rate equation approach in
duced in@1# ~see Sec. II! to predict the power-law exponen
for stochastic models, where new nodes joining the netw
make links preferentially, and existing nodes in the netw
are uniformly deleted at a constant rate. We show that
such models the power-law degree distribution of the res
ing network has an exponentg.3, and that it rapidly ap-
proaches̀ as the deletion and insertion rates become eq
Thus a network with even small deletion rates~see Fig. 2
below! will essentially have characteristics that are mo
similar to an exponential degree distribution. In Sec. III, w
introduce a compensatory rewiring procedure to exploit
deletion dynamic of the nodes itself to maintain a scale-f
structure. In this protocol, in addition to the new nodes m
ing preferential attachments, existing nodes compensate
lost links by initiating new preferential attachments. W
show that the exponent of the power law for the degree
tributions of the resulting networks for any deletion rate c
be tuned as close to 2 as desired, and hence the prop
protocol is universal. Thus, we provide a local random p
tocol for generating scale-free networks even in the lim
where the deletion and addition rates are equal and the
work size is almost constant. Applications of the protoc
designed in Sec. III to both analysis and design of comp
and P2P networks are discussed in Sec. IV.

II. GROWING NETWORKS IN THE PRESENCE
OF PERMANENT NODE DELETION

The scale-free properties of growing networks that inc
porate preferential attachment withpermanent deletion o
randomly chosen linkswas considered by Dorogovtsev an
Mendes@1#. They concluded that the scale-free properties
the emerging network depend strongly on the deletion rat
the links and are observed only for low deletion rates. Ho
ever, the analysis of the effect ofrandom deletions of node
at a fixed ratewas incomplete. A comprehensive analysis
presented in this section, and, as noted in the Introduct
the associated results are shown to have far-reaching co
quences forad hocnetworks.

A. Preferential attachment and random node deletions

We consider the following model. At each time step,
node is inserted into the network and it makesm attachments
to m preferentially chosen nodes. That is, for each of
links, a node with degreek is chosen as a target with prob
ability proportional tok. Then with probabilityc a randomly
chosen node is deleted.

We adopt the same approach as introduced in@1# for our
analysis. Let each node in the network be labeled by the t
it was inserted, i.e., thei th node in the network is the nod
that was inserted at time stepi. Next definek( i ,t) as the
degree of thei th node at timet, wheret. i . Let D( i ,t) be
the probability that thei th node is not deleted~i.e., it is still
in the network! until time t, where t. i . Assuming thei th
node to be in the network at timet, the rate at which its
expected degree increases is
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]k~ i ,t !

]t
5m

k~ i ,t !

S~ t !
2c

k~ i ,t !

N~ t !
, ~1!

where

S~ t !5E
0

t

D~ i ,t !k~ i ,t !di ~2!

is the sum of the degrees of all nodes that are present in
network at timet, andN(t)5(12c)t is the total number of
nodes in the network. Note that the first term in Eq.~1! is
simply the expected number of links nodei receives as a
result of them preferential attachments made by the new
introduced node. The probability that a randomly chos
node is among the neighbors of nodei, and hence the prob
ability that nodei loses a link, is, of course,k( i ,t)/N(t),
which accounts for the second term in Eq.~1!.

One can solve for the various unknown quantities in
following order:D( i ,t), S(t), and thenk( i ,t) using the ap-
proach of@1# ~see the Appendix for detailed derivations!. The
results are quoted below:

D~ i ,t !5S t

i D
c/~c21!

~3!

and

S~ t !52m
12c

11c
t52m

N~ t !

11c
. ~4!

Inserting Eq.~4! back into the rate equation, we get

]k~ i ,t !

]t
5m

~11c!k~ i ,t !

2m~12c!t
2

c

12c

k~ i ,t !

t

5
~11c22c!k~ i ,t !

2~12c!t
5

k~ i ,t !

2t
, ~5!

which implies that

k~ i ,t !5mS t

i D
b

, ~6!

whereb51/2. Equation~6! is quite significant since it state
that the degree of a node in the network~when it is not
deleted! does not depend on the deletion rate. To verify th
we have made numerous simulations for a wide range
deletion rates. Figure 1 shows the results for two rather
treme cases of 20% and 70% deletion rates, respectively

Now, to calculate the probabilityP(k,t) that a randomly
chosen node at timet will have degreek we need to calculate
the expected number of nodes at timet with degreek and
divide it by the total number of nodes,N(t). Let I k(t) be
the set of all nodesi with degreek at time t. Since we are
following a continuous-time rate equation approach,
number of nodes inI k(t) is the number ofi’s for which k
<k( i ,t),k11, which can be approximated a
u]k( i ,t)/] i u i 5 i k

21 , where i k is the solution to the equation

k( i ,t)5k. Hence, we get
1-2
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P~k,t !5
@~No. of nodes with degree!5k#

~Total number of nodes!

5
1

N~ t ! (
i PI k~ t !

D~ i ,t !5
1

N~ t !
D~ i k ,t !U]k~ i ,t !

] i U
i 5 i k

21

.

~7!

From Eq.~6!, we obtain

t

i k
5m21/bk1/b,

and thus

FIG. 1. The evolution of the degree of a node inserted in
network. The power-law growth, and its independence of the d
tion rate, are at the heart of the results of Sec. II.~a! is the plot for
the case of 20% deletion rate while~b! is for the case of 70%
deletion rate. A node is inserted at time stept53000, and its degree
is recorded at future time steps~for m510) until it gets deleted.
Over 1000 trials, the degrees of this node~for the trials where it was
not deleted until time step 10 000! are averaged, and the results a
compared to predictions.
02610
U ] i

]k~ i ,t !U
i 5 i k

5m1/bk21/b21~21/b!t. ~8!

Inserting it in Eq.~7!, we get

P~k,t !5
k2c/@~12c!b#

~12c!m21/@b~12c!# k21/b215
k212„1/@~12c!b#…

~12c!m21/@b~12c!# ,

~9!

which is a power-law distribution with the exponent

g511
1

~12c!b
. ~10!

This equation for obtaining the power-law exponent fro
Eq. ~6! for a generalb will be used later on too. Note tha
(g21)b51/(12c), which is a violation of the naive scal
ing relation which suggests (g21)b51 ~see@1,3# for a dis-
cussion about this general scaling rule!. The reason for such
violation is the effective renormalization of the number
nodes with a given degree~due to deletion!, as also sug-
gested in@1#.

For our case ofb51/2 we get the exponent of

g511
2

12c
. ~11!

As illustrated in Fig. 2, simulation results provide a ve
fication of Eq.~11!.

e
e-

FIG. 2. The power-law exponent for the degree distribution
networks generated with the model discussed in Sec. II. The t
steps at which snapshots are taken vary from 20 000 to 100
based on the deletion rate, so that at the time of the snapshot al
20 000 nodes are in the network for all cases. The theory and
simulation results are in perfect agreement forc<0.6. For larger
values of c, however, tracking the rapidly growing exponent
rather hard, and the deviation is due to the finite number of ti
steps in the simulations. Note that the value of the exponent foc
.50% is too large for the network to display any of the desira
properties usually associated with scale-free networks.
1-3
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B. Additional preferentially targeted links will not help

We now show that introducing new preferential attac
ments, as introduced in@2#, will not help control the diver-
gence of the exponent. To see this, let us modify the proto
as follows: At each time step, a new node is added an
makesm preferential attachments;c randomly chosen node
are deleted; and a randomly chosen node initiatesb prefer-
entially targeted links.

Following the same steps as in the preceding section,
can show thatS(t)52m(11c)(b11)t/(12c), and one can
verify that the rate equation would simplify to

]k~ i ,t !

]t
5m

~11c!k~ i ,t !

2m~12c!t
2

c

12c

k~ i ,t !

t
5

k~ i ,t !

2t
,

which is identical to Eq.~5!, and hence results in the sam
power-law exponent as in Eq.~11!.

C. The expected degree of any particular node

The degree of an existing node is governed by Eq.~6!
until it gets deleted, when its degree can be assumed to b
Thus, the expected degree of thei th node at timet is given
by ~see@1,3#!

E~ i ,t !5K~ i ,t !D~ i ,t !

5mS t

i D
c/~12c!1b

5mS t

i D @2~b11!c1b#/~12c!

. ~12!

Hence, if we definec05b/(b11)51/3, then, forc,c0 ,
E( i ,t)→`, and, forc.c0 , E( i ,t)→0 whent/ i→`.

III. THE COMPENSATION PROCESS

We now introduce a local and universal random proto
that will lead to the emergence of true scale-free netwo
when nodes are deleted at a fixed rate.

A. Deletion-compensation protocol

Consider the following process, where at each time s
~1! a new node is inserted and it makesm connections tom
preferentially chosen nodes;~2! with probability c, a uni-
formly chosen node and all its links are deleted;~3! If a node
loses a link, then to compensate for the lost link it initiat
n,ncrit(c) ~n is real! links, the targets of which are chose
preferentially@the upper-boundncrit(c) is specified later#.

This protocol is simple in its description as well as
implementation. It is also truly local, i.e., the decisions for
nodes~whether to be deleted or to initiate a compensat
link! are independent and based on the node’s own state

B. Properties of the emergent network

1. Degree distribution

In order to write the rate equation fork( i ,t), the degree of
the i th node at timet, we first recognize that the two term
02610
-

ol
it

ne

0.

l
s

p

s

l
y

on the right-hand side of the rate equation in Eq.~1! capture
the dynamics introduced by the insertion of a new node
the random deletion of an existing node and hence will a
be in the present rate equation. In addition, we need to
clude terms that capture the compensatory dynamics of
protocol outlined above. LetS(t) be the sum of the degree
of all the nodes in the network at timet @as defined in Eq.
~2!#, and let ^k(t)&5S(t)/N(t) be the average degree o
nodes at timet. Then we note that~i! the probability that the
i th node loses a link isck( i ,t)/N(t), and hence the expecte
number of links it picks up isnck( i ,t)/N(t), and ~ii ! since
each of the nodes that loses an edge@there arec^k(t)& such
expected nodes# makesn new preferential attachments, th
number of these new preferential edges picked up by thei th
node is nc^k(t)&k( i ,t)/S(t). Hence, the rate equation fo
k( i ,t) can be stated as

]k~ i ,t !

]t
5m

k~ i ,t !

S~ t !
2c

k~ i ,t !

N~ t !
1nc

k~ i ,t !

N~ t !
1nc^k~ t !&

k~ i ,t !

S~ t !
.

~13!

Note thatD( i ,t) is still given by Eq.~3!. Next, for com-
puting S(t) we provide a direct method as an alternative
the approach taken in@1# and in the Appendix. LetE(t)
5S(t)/2 be the total number of edges/links in the network
time t. Then,E(t) is altered at thetth time step as follows:~i!
the new node brings inm edges,~ii ! with probability c,
^k(t)& expected edges are removed due to the random d
tion of a node, and~iii ! with probability c, n^k(t)& expected
new edges are added as part of the compensatory w
aspect of the protocol. Hence, the rate equation forE(t) is

dE~ t !

dt
5m2~c2nc!^k~ t !&5m2~c2nc!

S~ t !

N~ t !
. ~14!

SubstitutingS(t)52E(t) andN(t)5(12c)t, we get

S~ t !5
2m~12c!

11c22nc
t and ^k~ t !&5

2m

11c22nc
5^k&c .

~15!

InsertingS(t) back into Eq.~13! we get

]k~ i ,t !

]t
5

k~ i ,t !

2~12c!t
~11c22nc22c14nc!

5
k~ i ,t !

2~12c!t
~12c12nc!. ~16!

Hence, k( i ,t)5m(t/ i )b, where b5(12c12nc)/@2(1
2c)#. Next, applying Eq.~10!, we get the power-law expo
nent to be

g511
2

12c12nc
. ~17!

Note that, in this case, there is no singularity whenc→1. In
fact, for c51 and 0,n<ncrit(1)51, we get
1-4
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g511
1

n
. ~18!

The power-law exponents are computed for the rangc
50 – 90 % andn51, and the results are checked against p
dictions in Fig. 3.

Note that Eq.~15! is valid only when the denominator i
positive, which is equivalent to a finite average degree.
11c22nc.0, which implies that2c12nc,1 andg.1
12/(111)52. This also implies that, for any givenc, 0
,n,ncrit5(11c)/(2c). Thus,for any given deletion rate c
by varying the average number of compensatory edges
each deleted edge n, one can program the power-law ex
nent g to be anywhere in~2, `!. Of course, the price one
pays for getting close to 2 is the associated increase in
average degree, as implied by Eq.~15!. This also provides a
hint for designing network protocols, that is, too many co
pensatory links might make the network unstable.

2. The expected degree of a random node at time t

Let us look at the quantityE( i ,t) as defined in Eq.~12!:

E~ i ,t !5D~ i ,t !K~ i ,t !5mS t

i D
2c/~12c!1b

5mS t

i D @22c1~12c12nc!#/@2~12c!#

5mS t

i D @12c~322n!#/@2~12c!#

. ~19!

Hence, for anyn,ncrit the expected degree of a rando
node would remain finite. A number of interesting observ
tions can be made from the form of the dependence ofg on
the parametersc and n. For example, for anyn.0.5, and
irrespective of the value ofc, we haveg,3 and the under-

FIG. 3. The power-law exponent for different values of the d
letion rate. The parametern is taken to be 1. For all values ofc, the
number of nodes at the times the snapshots were taken was ke
be at least 20 000. The simulation results are indicated byh.
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lying degree distribution has unbounded variance. Thus,
might want to work in the regime 1.n.0.5 and 1>c
.1/(322n). For example, ifn50.75 andc→1, then one
can get an exponent of 2.33, and yet have the expected
gree of any node be bounded.

IV. CONCLUDING REMARKS

We first point out a conceptual link between our compe
satory rewiring scheme discussed in Sec. III, and the dou
preferential attachment scheme, as introduced in@3,6#. In the
doubly preferential attachment protocol, some of the lin
have both the initiator and the target nodes chosen prefe
tially based on their degrees. For example, consider the
lowing random protocol. At each time step, a new node
inserted that makesm connections tom preferentially chosen
nodes. From the nodes in the network,l nodes are chosen
with probabilities proportional to their degrees. Each of the
selected nodes initiatesm new links tom preferentially cho-
sen targets. It can be shown@3,6# that the power-law expo-
nent g5211/(112l ), and hence, by choosingl, one can
make the exponent as close to 2 as desired. In this regard
compensatory rewiring scheme can be considered as a n
ral means for introducing doubly preferential attachmen
By uniformly deleting nodes, a node loses links with pro
ability proportional to its degree. So a node initiating a co
pensatory preferential attachment intrinsically introduc
doubly preferential attachments. The random deletion
nodes is thus being used in our stochastic protocol to lea
the emergence of truly scale-free networks.

One of our main motivations for this work was to desig
random protocols that will solve the problem of organizing
highly dynamic content sharing network. The first step in t
direction would be to design a local and easily impleme
able protocol that would lead to the emergence of a presp
fied network structure under the usage constraints impo
by the users. As mentioned in the Introduction, although
network size usually grows for such networks~more people
join such networks!, the time scale within which the siz
changes is much larger than the time scale within which
old members of the network log in and log off. Hence, t
desired form of the network structure should emerge alm
solely due to the dynamics of the protocol and cannot r
too much on the growth rate itself. As regarding the desi
structure of the network, motivated by many advantage
aspects of scale-free networks, one might want to come
with protocols that could make the network self-organ
into a scale-free structure with a desired power-law expon
~usually around 2.5!.

There has been some concern that searches on
power-law networks might not be scalable; however, our
cent results show that, by using bond percolation on the
derlying networks, one can make such networks very e
ciently searchable. In particular, we show that for netwo
having a power-law degree distribution with exponent clo
to 2, a traffic efficient search strategy can be locally imp
mented. Specifically, we show thatO„AN log2(N)… commu-
nications on those networks are sufficient to find ea
content with probability 1. This is to be compared

-

t to
1-5
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U„N log(N)… communications for currently used broadca
protocols. Also, the search takes onlyO„log(N)… time steps
@9#. Thus, scale-free structures with exponents close to 2
only are observed in current P2P systems, but also are
desirable structures for realizing a truly distributed and
structured P2P database system.

The very high rate of log offs in real P2P networks pr
vents the ordinary preferential attachment scheme fr
forming a scale-free network with exponent less than 3~as
shown in Sec. II!. The local compensation process intr
duced in Sec. III, however, imposes a scale-free struc
with an exponent that can always be kept below 3. All a no
has to do is to start a new preferential connection, whene
it loses one. Note that this compensatory procedure is q
natural ~and probably essential! for networks in which the
members have to be part of the giant connected compo
to be able to have access to almost all other nodes. In fac
many clients of the existing P2P networks, this condition
imposed by always keeping a constant number of links
active IP addresses. Our numerical simulations show
graphs resulting from our compensatory protocol are alm
totally connected; that is, a randomly chosen node with pr
ability 1 belongs to the giant connected component of
graph even in the limit ofc51. Thus,using our decentral-
ized compensatory rewiring protocol one can launch, tu
and maintain a dynamic and searchable P2P content-sha
system.

We also believe that our model can, at least intuitive
account for the degree distributions found in some crawls
P2P networks like Gnutella. As an example, in@7#, the de-
gree distribution of the nodes in a crawl of the network w
found to be a power law with an exponent of 2.3. Althou
the Gnutella protocol@8# does not impose an explicit stan
dard on how an agent should act when it loses a connec
there are certain software implementations of Gnutella wh
try always to maintain a minimum number of connections
trying to make new ones when one is lost. Thus, while
clients might not be compensating for lost edges, it is r
sonable to assume that at least a certain fraction are
shown in Sec. III, if we pickn50.75 ~i.e., 75% of the lost
links are compensated for!, and asc→1, the degree distribu
tion is indeed a power law with exponent 2.33.

To summarize, we have designed truly local and yet u
versal protocols which, when followed by all nodes, result
robust, totally connected, and scale-free networks with ex
nents arbitrarily close to 2 even in anad hoc, rapidly chang-
ing, and unreliable environment.
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APPENDIX

We provide details for the derivations of the quantiti
D( i ,t) ~the probability that thei th node is still in the net-
work at time t, t> i ) and S(t) ~the expected sum of the
degrees of all the nodes in the network at timet! as intro-
duced in Sec. II A. First, using the independence of
events corresponding to random deletions of nodes at e
time step, it is easy to verify thatD( i ,t11)5D( i ,t)@1
2c/N(t)#. Hence, the continuous version of the dynamic
D( i ,t) can be stated as follows:

]D~ i ,t !

]t
52c

D~ i ,t !

N~ t !
52

c

12c

D~ i ,t !

t
.

Since D(t,t)51, we get D( i ,t)5(t/ i )c/(c21). Note that
D( i ,t) is solely determined by the deletion ratec, and hence
its expression remains unchanged for the compensatory
wiring protocol introduced in Sec. III.

To find S(t), we first multiply both sides of Eq.~1! by
D( i ,t) and integrate outi from 0 to t. Then,

E
0

t

D~ i ,t !
]k~ i ,t !

]t
di5m2c

S~ t !

~12c!t
. ~A1!

The left-hand side of the above equation can now be sim
fied as follows:

E
0

t ]

]t
$D~ i ,t !k~ i ,t !%di2E

0

t

k~ i ,t !
]

]t
D~ i ,t !di

5
]

]t F E
0

t

$D~ i ,t !k~ i ,t !%diG2k~ t,t !D~ t,t !

2E
0

t

k~ i ,t !
c

t~c21!
D~ i ,t !di.

Substituting the above expression in Eq.~A1!, and noting
that k(t,t)5m, D(t,t)51, and S(t)5*0

t $D( i ,t)k( i ,t)%di,
we get

]S~ t !

]t
2m2

c

~c21!t
S~ t !5m2c

S~ t !

~12c!t
. ~A2!

The solution to the above equation is

S~ t !52m
12c

11c
t52m

N~ t !

11c
.
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